Code: 20ME6601

III B.Tech - II Semester - Regular Examinations - JUNE 2023

MICRO AND NANO MANUFACTURING (HONORS in MECHANICAL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

	1			1	1					
			BL	СО	Max.					
					Marks					
	UNIT-I									
1	Sun	nmarize any two growth techniques for nano	L2	CO1	14 M					
	stru	structures with their relative merits and demerits.								
	OR									
2	What are the applications of nanomaterials in			CO1	14 M					
	mechanical engineering? Explain.									
	•			•	,					
UNIT-II										
3	a)	Identify the purpose of SEM? Explain its	L2	CO2	7 M					
		principle.								
	b)	Interpret the principle of X-Ray diffraction.	L2	CO2	7 M					
	OR									
4	a)	Discuss about Atomic force microscope	L3	CO2	7 M					
		(AFM).								
	b)	Write about Scanning Probe Microscopy in	L2	CO2	7 M					
		detail.								

		UNIT-III			
5	a)	With neat sketches explain lithography process.	L2	CO3	10 M
	b)	Write short notes about micro fabrication.	L3	CO3	4 M
		OR			
6	a)	Paraphrase the working principle of thin film deposition and doping.	L2	CO3	7 M
	b)	Illustrate various steps in surface micro machining with neat sketches.	L3	CO3	7 M
		UNIT-IV			
7	a)	List out various actuation methods used in MEMS. Describe the principles of any two	L2	CO3	7 M
		methods with neat sketches.			
	b)	Elaborate Optical MEMS and RFMEMS.	L2	CO3	7 M
		OR			
8	a)	Describe with a neat diagram molecular beam epitaxy.	L3	CO3	7 M
	b)	Restate Template Manufacturing used to fabricate 3-D organic and inorganic structures.	L3	CO3	7 M
		UNIT-V			
9	a)	List the advantages, disadvantages and applications of micro grinding process.	L2	CO4	10 M
	b)	Outline few applications in optical manufacturing.	L3	CO4	4 M
	I	OR	1	1	

10	a)	Infer the importance of Nano grinding	L2	CO4	4 M
		tools.			
	b)	Elaborate Semiconductor and electronics	L3	CO4	10 M
		related applications of ultra-precision			
		processes.			